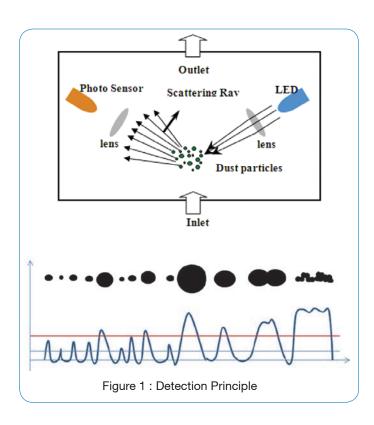


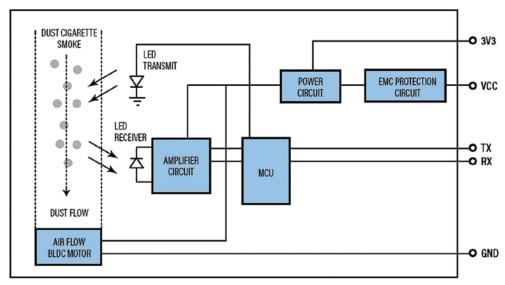
SM-UART-04L PM2.5 + PM10 Particulate Dust Sensor

SM-UART-04L Particulate Dust Sensor is designed for a wide range of air quality applications where fine particle dust needs to be measured. Applications include air quality meters and air purifiers for both residential and light industrial monitoring and control. The optical design leverages laser technology, which allows customers to achieve excellent performance with balanced reliability. SM-UART-04L is an ideal solution for industrial and consumer applications.


SM-UART-04L is a PM2.5 laser-based Particulate Dust Sensor that detects dust particle concentration in air by using an optical sensing method. A laser light emitting diode (laser LED) and a photo sensor are optically arranged in the device. The photo sensor detects the reflected laser LED light by dust particles in air. The dust sensor can detect small particles from large house dust, by the pulse pattern of the signal output.

Features

- Laser Optical Dust
 - High accuracy
 - Fast response
- PM2.5 Output
- PM10 Calculated Output
- ROHS and REACH Compliant
- · UART Series Digital Output
- Compact in size
- Flexible mounting style
- Protected from EMC intrusion by metal case
- Wide detection range
- Average Time Before Re-calibration: 40,000 hrs


Applications

- Indoor Air Quality Monitoring
- · Air Cleaners and Purifiers
- · Air Conditioners and HVAC
- Outdoor Dust Monitoring (with additional protection)

Block Diagram

Calibration

Calibration carried out with cigarette smoke per GB/T1880

Absolute Maximum Ratings

Absolute Maximum Ratings						
Parameter	Symbol	Rating	Unit			
Supply Voltage	Vcc	0 to + 5.5	V			
Operating Temperature	Topr	-10 to 50	°C			
Storage Temperature	Tstg	-30 to 70	°C			
Operating Humidity (1)	RHopr	0 to 95	%			
Storage Humidity (1)	RHstg	0 to 95	%			

¹⁾ Non-condensing

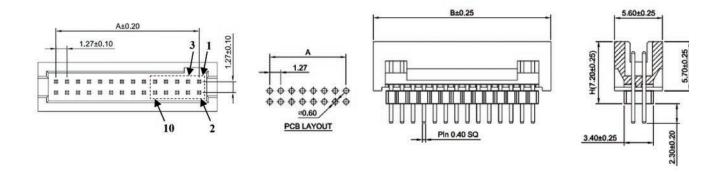
Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit
Particle Size		D	0.3	2.5	10	um
Detection Range		D_{reg}	1	_	999	μg/m³
Resolution		R	_	1	_	μg /m³
Indication France (2)	1 ~100 ug/m³	D	_	_	+/-10	μg /m³
Indication Error (2)	100~999 ug/m³	- D _{err}	_	_	+/-10	%
Warm-Up Time		t _{wup} (2)	_	5	_	S
Response Time	t _{rsp} (2)	_	1	_	s	
Laser Life (Average	Т	_	40,000	_	hour	
Supply Voltage		V _{cc}	4.8	5	5.2	V
Supply Voltage Rip	V _{cc} Ripple	_	_	30	mV	
Current Consumption	I _{CC} (2)	_	60	100	mA	
Output (UART)			3.3V			

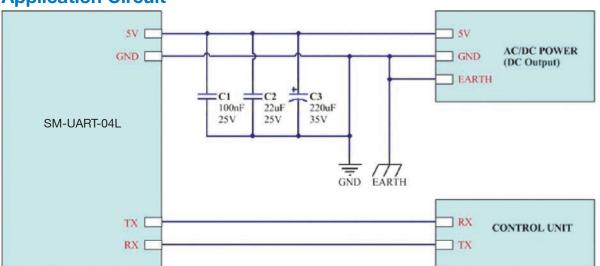
¹⁾ Non-condensing

²⁾ Testing at T=25°C, RH=40-60%

Connector


Sensor Connector:

CJT A1276WVA-N-2x5P-H72


Equivalent Connector:

Harwin, Inc. M50-3000545; Amphenol FCI 20021311-00010T4LF

Pin #	Pin Name	Description
1	5V	Input Supply Voltage
2	5V	Input Supply Voltage
3	GND	Ground
4	GND	Ground
5	RESET	Reset Pin @3.3V TTL, Low level reset
6	NC	-
7	RXD	UART Receiver @ 3.3V TTL
8	NC	_
9	TXD	UART Transceiver @ 3.3V TTL
10	SET/SLEEP	Working Mode Pin @ 3.3V TTL Floating or high level for normal working condition. Low level for dormancy mode.

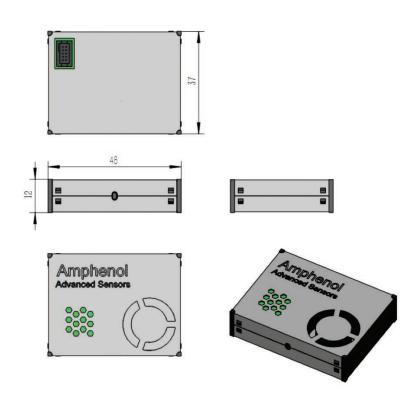
Application Circuit

Communication Protocol - UART

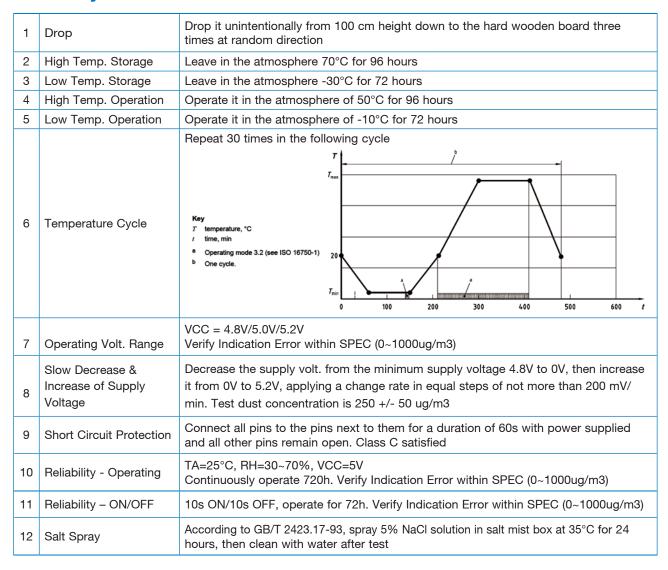
UART Serial Configuration				
Baud Rate 9600 bps				
Data Bits	8			
Parity	None			
Stop Bits	1			

Communication Protocol - Default Output UART Frame Format

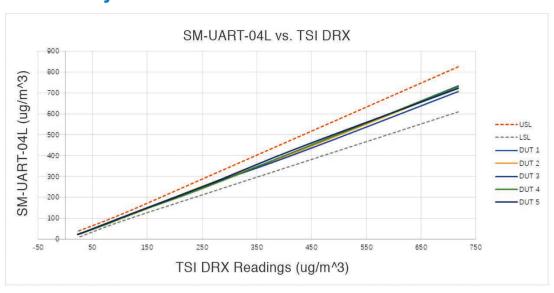
Head 1	0x42	
Head 2	0x4D	
H_Length		Law with 0 * 10 + 0 (Data + CO)
L_Length		Length = 2 * 13 + 2 (Data+CS)
H_D1		DM4 LL D4 * 0FC + L D4 + r-/r-0 /Oten-devid Consilio Colordated Value
L_D1		PM1 = H_D1 * 256 + L_D1 ug/m3 (Standard Smoke, Calculated Value
H_D2		PM2.5 = H_D2 * 256 + L_D2 ug/m3 (Standard Smoke, Calibrated Value)
L_D2		PMZ.5 = H_DZ 256 + L_DZ ug/m3 (Standard Smoke, Calibrated Value)
H_D3		DM40 II D2 * 0F6 : I D2 ::=/m2 /Ctandard Cmake Calculated Value)
L_D3		PM10 = H_D3 * 256 + L_D3 ug/m3 (Standard Smoke, Calculated Value)
H_D4		DM1 - H D4 * 256 + L D4 ug/m2 /Environment Calculated Value)
L_D4		PM1 = H_D4 * 256 + L_D4 ug/m3 (Environment, Calculated Value)
H_D5	•••	PM2.5 = H_D5 * 256 + L_D5 ug/m3 (Environment, Calculated Value)
L_D5		FINIZ.5 = H_D5 Z50 + L_D5 ug/III5 (EIIVIIOIIIIIeIII, Calculated value)
H_D6		DM10 - H. D6 * 256 + L. D6 ug/m2 /Environment Colculated Value
L_D6		PM10 = H_D6 * 256 + L_D6 ug/m3 (Environment, Calculated Value)
H_D7		
L_D7		
H_D8		
L_D8		
H_D9		
L_D9		
H_D10		
L_D10		
H_D11		
L_D11		
H_D12		
L_D12	•••	
H_D13		Version number
L_D13		Error code 0b0ABCDEFG A = 1 Laser error B = 1 Laser alarm C = 1 High temperature alarm D = 1 Low temperature alarm E = 1 Fan error F = 1 Fan speed compensation start G = 1 Fan speed alarm
H_CS		
L_CS		CS = HEAD1 + HEAD2 + + L_D13


^{*} We recommend the customers use PM values with the standard smoke.

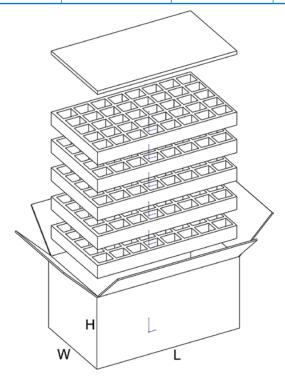
Response Mode - Command Frame


Head 1	Head 2	CMD	D1	D2	CRC1	CRC2
0x42	0x4D	CMD	DATAH	DATAL	LRCH	LRCL

CMD	DATAH	DATAL	Description	Response
0xE2	Х	X	Get reading	Same format as above table
0xE1	Х	0x00 – Ask-answer mode 0x01 – Direct output mode	Output mode switch	0x42 0x4D 0x00 0x04 0xE1 0x00 0x01 0x74 0x42 0x4D 0x00 0x04 0xE1 0x01 0x01 0x75
0xE4	Х	0x00 - Standby mode 0x01 - Working mode	Standby control	0x42 0x4D 0x00 0x04 0xE4 0x00 0x01 0x77


Dimensions

Reliability



Data Consistency

Packing Specifications

Length (L)	Width (W)	Height (H)	Inner Qty	Total Qty	Weight
418.2mm	295mm	210mm	5 layer	200 pcs	5kg max

Application Notes

Grounding

The metal case is internally connected to GND. Do not strip the metal case.

Maintenance

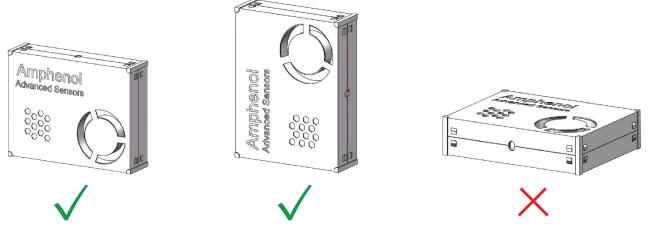
The product is designed to be maintenance free.

Do not attempt to disassemble the device. There are no user-servicable parts in the module. Disassembly will invalidate warranty.

Electro-Magnetic (EM) Noise

Excessive electro-magnetic (EM) noise may degrade sensor performance. Shield sensor from EM noise in application.

Vibration


Excessive vibration may degrade sensor's performance. Please keep sensor far from vibration in application.

Ambient Light

Excessive ambient light may degrade sensor performance. Keep sensor far from intense direct light.

Mounting Orientation

Please take sensor mounting orientation into consideration to avoid the influence of adhered dust. The sensor is installed vertically as the best of below:

In addition, please avoid any adhesive particle (fur, oil, etc). If particles adhere to optical part, malfunction may occur.

www.telaire.com

www.amphenol-sensors.com